(Q19). Two dice are rolled simultaneously and counts are added

Q(i) Complete the table given below:

Event : 'Sum on 2 Dice' 2 3 4 5 6 7 8 9 10 11 12
Probability
1
36
         
5
36
     
12
36

(ii) A student argues that 'there are 11 possible outcomes 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12. Therefore, each of them has a probability
1
11
Do you agree with this argument? Justify your answer.

Answer :

When two dice are rolled, total number of outcomes = (see the given table).

- 1 2 3 4 5 6
1 1,1 1,2 1,3 1,4 1,5 1,6
2 2,1 2,2 2,3 2,4 2,5 2,6
3 3,1 3,2 3,3 3,4 3,5 3,6
4 4,1 4,2 4,3 4,4 4,5 4,6
5 5,1 5,2 5,3 5,4 5,5 5,6
6 6,1 6,2 6,3 6,4 6,5 6,6

(i)

Event : Sum on 2 dice Favourable outcomes No. of favourable outcomes Probability =
No. of favourable outcomes
No. of total outcomes
2 (1,1) 1
1
3 (1,2),(2,1) 2
2
=
1
4 (1,3),(2,2),(3,1) 3
3
=
1
5 (1,4),(2,3),(3,2),(4,1) 4
4
=
1
6 (1,5),(2,4),(3,3),(4,2),(5,1) 5
5
7 (1,6),(2,5),(3,4),(4,3),(5,2),(6,1) 6
6
=
1
8 (2,6),(3,5),(4,4),(5,3),(6,2) 5
5
9 (3,6),(4,5),(5,4),(6,3) 4
4
=
1
10 (4,6),(5,5),(6,4) 3
3
=
1
11 (5,6),(6,5) 2
2
=
1
12 (6,6) 1
1

(ii) The above (given) argument is wrong [from the above table].

The sum 2, 3, 4, ………… and 12 have different no. of favourable outcomes, moreover total number of outcomes are .